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Populations and Samples

Statistical Inference deals with making (probabilistic) statements
about a population of individuals based on information that is
contained in a sample taken from the population. We do this by

(a) estimating unknown population parameters with sample statistics.
(b) quantifying the uncertainty(variability) that arises in the estimation

process.

Population: The total set of subjects in which we are interested such
as “All undergraduates at USC”, “every atom composing a crystal”,
batteries, about which we would like to make a statement(e.g.,
median IQ score, mean size, mean lifetime).

Sample: The subset of the population for whom we have data, often
random selected. Mathematically, it means that all observations are
independent and follow the same probability distribution. Informally,
this means that each sample(of the same size) has the same chance
of being selected.
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Populations and Samples

Remarks: It is generally accepted that the entire population can not be
measured(b/c too large or too time-consuming to do so). A random
sample is usually the best way to obtain individuals that are
“representative” of the entire population. Denote a random sample of
observations by

Y1,Y2, . . . ,Yn

Where

Yi is the value of Y for for the ith individual in the sample.

n is the sample size that indicates how many individuals are in the
sample.

Lower case notation y1, y2, . . . , yn is used when citing numerical
values.
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Population and Samples

Figure 1: Histogram(left) and boxplot(right) of the battery lifetime data
(measured in hours).
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Population and Samples

Consider the following random sample of n = 50 battery lifetimes
y1, y2, . . . , y50 measured in hours.

4258 2066 2584 1009 318 1429 981 1402
. . . . . . . . . . . . . . . . . . . . . . . .
99 510 582 308 3367 99 373 454

Which continuous probability distribution seems to display the same
type of pattern in the histogram?

An exponential(λ) model seems reasonable here. What is λ?

λ is called a (population) parameter. It describes the distribution
which is used to model the entire population of batteries.

In general, (population) parameters which characterize probability
distributions are unknown.
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Parameters and Statistics

Parameter: A numerical summary of the population, such as a
population proportion p for a categorical variable fixed but usually
unknown.

Statistic: A numerical summary of a sample taken from the
population, such as the sample mean, sample proportion, sample
median and so on.

All of the probability distributions that we talked about in chapters 3-5
were characterized by population(model) parameters. For example,

N (µ, σ2) characterized by the population mean µ and population
variance σ2.

Poisson(λ) characterized by one parameter, the population mean λ.

Weibull(β, η) characterized by the shape parameter β and the scale
parameter η.

Chong Ma (Statistics, USC) STAT 509 Spring 2017 March 13, 2017 8 / 28



Parameters and Statistics

Suppose that Y1,Y2, . . . ,Yn is a random sample from a population.
The sample mean is

Ȳ =
1

n

n∑
i=1

Yi

The sample variance is

S2 =
1

n − 1

n∑
i=1

(Yi − Ȳ )2

The sample standard deviation is the positive square root of the sample
variance,

S =
√
S2 =

√√√√ 1

n − 1

n∑
i=1

(Yi − Ȳ )2
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Paramters and Statistics

The table below succinctly summarizes the differences between a
population and a sample (a parameter and a statistic):

Group of individuals Numerical quantity Status
Population(not observed) Parameter Unknown

Sample(observed) Statistic Calculated from sample data

In the battery lifetime example,

ȳ = 1274.14 is an estimate of the population mean µ.

s2 = 1505156 is an estimate of the population variance σ2.

s = 1226.848 is an estimate of the population standard deviation σ.
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Point Estimators

For notational simplicity, we denote population parameters by θ(a “wild
card”). θ could denote a population mean, population variance or a
Weibull or Gamma model parameters. A point estimator θ̂ is a statistic
that is used to estimate a population parameter θ. Common examples of
point estimators are

Ȳ → a point estimator for µ(popultaion mean)

S2 → a point estimator for σ2(popultaion mean)

S → a point estimator for σ(popultaion mean)

Remarks: A point estimator θ̂ is a statistic, so it depends on the sample
of data Y1,Y2, . . . ,Yn.

The data Y1,Y2, . . . ,Yn comes from the sampling process, that is,
different random samples yield different data sets Y1,Y2, . . . ,Yn.

In this light, because the sample values Y1,Y2, . . . ,Yn will vary from
sample to sample, so will value of θ̂. It therefore makes perfect sense
to think about the distribution of θ̂ itself.
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Point Estimator

The distribution of θ̂ is called its sampling distribution. A sampling
distribution describes how the estimator θ̂ varies in repeated sampling.

Accuracy θ̂ is an unbiased estimator of θ if and only if E (θ̂) = θ.
Unbiasedness is a characteristic describing the center of a
sampling distribution, which deals with accuracy.

Precision The standard error of a point estimator θ̂ is equal to

se(θ̂) =

√
var(θ̂)

An estimator’s standard error measures the amount of
variability in the point estimator θ̂. Therefore,

smaller se(θ̂)⇔ θ̂ more precise
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Sampling Distribution

Suppose that Y1,Y2, . . . ,Yn is a random sample from a N(µ, σ2)
distribution. The sample mean Ȳ follows the sampling distribution:

Ȳ ∼ N
(
µ,
σ2

n

)
where it indicates that

E (Ȳ ) = µ, the sample mean Ȳ is an unbiased estimator of the
population mean µ.

var(Ȳ ) = σ2

n is the variance of Ȳ .

Example Assume the distribution of

Y = time(in seconds) to react to brake lights during in-traffic driving

follows the distribution Y ∼ N (µ = 1.5, σ2 = 0.16). We call this the
population distribution, because it describes the distribution of values of
Y for all individuals in the population (in-traffic drivers).
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Sampling Distribution

(a) Suppose that we take a random sample of n = 5 drivers from the
population with times Y1,Y2, . . . ,Y5. What is the distribution of the
sample mean Ȳ ?

Note that the sample size n = 5, µ = 1.5 and σ2 = 0.16, we have

Ȳ ∼ N (µ,
σ2

n
)⇒ Ȳ ∼ N (1.5, 0.032)

(b) Suppose that we take a random sample of n = 25 drivers from the
population with times Y1,Y2, . . . ,Y25. What is the distribution of the
sample mean Ȳ ?
Note that the sample size n = 25, µ = 1.5 and σ2 = 0.16, we have

Ȳ ∼ N (µ,
σ2

n
)⇒ Ȳ ∼ N (1.5, 0.0064)
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Sampling Distribution

Figure 2: Brake time. Population distribution Y ∼ N (µ = 1.5, σ2 = 0.16). Also
depicted are the sampling distribution of Ȳ when n = 5 and n = 15.
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Central Limit Theorem(CLT)

Given certain conditions, the arithmetic mean of a sufficiently large
number of independent random variables, each with a well-defined(finite)
expected value(µ) and finite variance(σ2), will be approximately normally
distributed, regardless of the underlying distribution. Mathematically, it
can be rewritten as follows.

CLT

Suppose {Y1,Y2, . . . ,Yn} is a sequence of i.i.d random variables with
E [Yi ] = µ and Var(Yi ) = σ2 <∞. Then as n approaches infinity, the

random variable
√
n(Ȳn−µ)

σ converge in distribution to the standard normal
distribution N(0, 1).

In other words,

Ȳn ∼ AN (µ,
σ2

n
)
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Central Limit Theorem

Example The time to death for rats injected with a toxic substance,
denoted by Y (measured in days), follows an exponential distribution with
λ = 1/5. That is, the population distribution is

Y ∼ exponential(λ = 1/5)

Suppose that n = 25 rats are injected with the toxic substance. What is
the probability the sample mean survival time Ȳ will greater than 7 days?

Note that n = 25, µ = 1
λ = 5 and σ2 = 1

λ2 = 25, the CLT says that

Ȳ ∼ AN (µ,
σ2

n
)⇒ Ȳ ∼ AN (5, 1)

Therefore,

P(Ȳ ≥ 7) = 1− P(Ȳ < 7)

= 1− pnorm(7, 5, 1)

= 0.023
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Central Limit Theorem

Figure 3: Rat death time. Population distribution Y ∼ exponential(λ = 1/5).
Also depicted are the sampling distributions of Ȳ when n = 5 and n = 25.
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t distribution

Suppose that Y1,Y2, . . . ,Yn is a random sample from a N (µ, σ2)
distribution. Recall previous slides, we know that the sample mean Ȳ has
the following distribution:

Ȳ ∼ N (µ,
σ2

n
)

If we standardize Ȳ , we obtain

Z =
Ȳ − µ
σ/
√
n
∼ N (0, 1)

If we replace the population standard deviation σ with the sample
standard deviation S , we get a new sampling distribution

t =
Ȳ − µ
S/
√
n
∼ tn−1

a t distribution with degrees of freedom ν = n − 1.
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t distribution

Figure 4: Probability distribution of N (0, 1), t2 and t10.
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t distribution

The t distribution has following characteristics:

It is continuous and symmetric about 0(just like the standard normal
pdf).

It is indexed by a value ν callsed the degrees of freedom. In
practice, ν is often an integer(related to sample size).

As ν →∞, tν → N (0, 1).

When compared to the standard normal pdf, the t pdf generally is less
peaked and has more probability (area) in the tails.

The pdf for tν is

f (t) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(
1 +

t2

ν

)− ν+1
2

In R, we use the code pt(t,ν) for computing the cdf FT (t) and qt(t,ν) for
computing the quantile φp.
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t distribution

Example Hollow pipes are to be used in an electrical wiring project. In
testing “1-inch” pipes, the data collected by a design engineer. The data
are measurements of Y , the outside diameter of this type of pipe
(measured in inches). These n = 25 pipes were randomly selected and
measured-all in the same location. The manufactures of this pipe claim
that the population distribution is normal(Gaussian) and that the mean
outside diameter is µ = 1.29 inches. Under this assumption (which may
or may not be true), calculate the value of

t =
ȳ − µ
s/
√
n

You can find the data in R tutorial. The sample mean and sample
standard deviation are Ȳ = 1.299 and s = 0.011, therefore

t =
ȳ − µ
s/
√
n

=
1.299− 1.29

0.011/
√

25
≈ 4.096
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t distribution

Figure 5: t24 probability density function. An “×” indicates that t = 4.096.
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Normal QQ plot

Remarks: The t distribution result still approximately holds, even if the
underlying population distribution is not perfectly normal. We also say the
sampling distribution of t is robust to the normality assumption. The
approximation is best when

the sample size is large(n ≥ 30).

the population distribution is more symmetric(not highly skewed).

Recall that we used Weibull qq plot to assess the Weibull model
assumption in the last lecture, we can use a normal
quantile-quantile(qq) plot to assess the normality assumption. The plot
is constructed as follows:

On the vertical axis, we plot the ascending-ordered observed data.

On the horizontal axis, we plot the ordered theoretical quantiles from
the distribution(model) assumed for the observed data(here, normal).
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Normal QQ plot

Figure 6: Pipe diameter data. Normal QQ plot. The observed data are plotted
versus the theoretical quantiles from a standard normal distribution. The line
added passes through the first and third quantiles.
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